Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria.

نویسندگان

  • Dmitry A Rodionov
  • Mikhail S Gelfand
  • Nicole Hugouvieux-Cotte-Pattat
چکیده

In the plant-pathogenic enterobacterium Erwinia chrysanthemi, almost all known genes involved in pectin catabolism are controlled by the transcriptional regulator KdgR. In this study, the comparative genomics approach was used to analyse the KdgR regulon in completely sequenced genomes of eight enterobacteria, including Erw. chrysanthemi, and two Vibrio species. Application of a signal recognition procedure complemented by operon structure and protein sequence analysis allowed identification of new candidate genes of the KdgR regulon. Most of these genes were found to be controlled by the cAMP-receptor protein, a global regulator of catabolic genes. At the next step, regulation of these genes in Erw. chrysanthemi was experimentally verified using in vivo transcriptional fusions and an attempt was made to clarify the functional role of the predicted genes in pectin catabolism. Interestingly, it was found that the KdgR protein, previously known as a repressor, positively regulates expression of two new members of the regulon, phosphoenolpyruvate synthase gene ppsA and an adjacent gene, ydiA, of unknown function. Other predicted regulon members, namely chmX, dhfX, gntB, pykF, spiX, sotA, tpfX, yeeO and yjgK, were found to be subject to classical negative regulation by KdgR. Possible roles of newly identified members of the Erw. chrysanthemi KdgR regulon, chmX, dhfX, gntDBMNAC, spiX, tpfX, ydiA, yeeO, ygjV and yjgK, in pectin catabolism are discussed. Finally, complete reconstruction of the KdgR regulons in various gamma-proteobacteria yielded a metabolic map reflecting a globally conserved pathway for the catabolism of pectin and its derivatives with variability in transport and enzymic capabilities among species. In particular, possible non-orthologous substitutes of isomerase KduI and a new oligogalacturonide transporter in the Vibrio species were detected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.

Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids...

متن کامل

Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937.

Erwinia chrysanthemi 3937 secretes several pectinolytic enzymes, among which eight isoenzymes of pectate lyases with an endo-cleaving mode (PelA, PelB, PelC, PelD, PelE, PelI, PelL, and PelZ) have been identified. Two exo-cleaving enzymes, the exopolygalacturonate lyase, PelX, and an exo-poly-alpha-D-galacturonosidase, PehX, have been previously identified in other E. chrysanthemi strains. Usin...

متن کامل

PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases.

Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes, including at least eight endo-pectate lyases encoded by pel genes, which play a major role in the soft-rot disease caused by this bacterium on various plants. E. chrysanthemi also produces some hydrolases that cleave pectin. Three adjacent hydrolase genes, pehV, pehW, and pehX, encoding exo-poly-alpha-D-galacturonosidases, h...

متن کامل

Regulation and role in pathogenicity of Erwinia chrysanthemi 3937 pectin methylesterase.

The gene pem, encoding the pectin methylesterase (PME) of Erwinia chrysanthemi 3937, was cloned and mutagenized by mini-Mu transposable elements. A second gene, pecY, which could act as a negative regulator of PME was found 5' to the pem gene. A PME-E. chrysanthemi derivative inoculate onto Saintpaulia plants was shown to be clearly noninvasive, demonstrating the important role of this enzyme i...

متن کامل

Harpin mediates cell aggregation in Erwinia chrysanthemi 3937.

The hypersensitive response elicitor harpin (HrpN) of soft rot pathogen Erwinia chrysanthemi strains 3937 and EC16 is secreted via the type III secretion system and remains cell surface bound. Strain 3937 HrpN is essential for cell aggregation, but the C-terminal one-third of the protein is not required for aggregative activity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 150 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2004